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Results are presented of numerical modelling of the supersonic flow of a viscous 
heat conducting gas in the neighborhood of a backward step for the Mach number 
M~ = 2.9 and the Reynolds number Re= = 9.5"103-3.2"104 . Kinetically consistent 
difference schemes are used to perform the computations. The results obtained 
are compared with the data of full-scale experiments. 

INTRODUCTION 

One of the urgent problems of modern aerodynamics is the modelling of supersonic viscous 
separation flows of both stationary and nonstationary type. Of special interest in such 
computations is the determination of the thermal loads on the specimen walls, for whose com- 
putation dissipative properties of the gas at the solid walls must be taken into account. 
According to modern representations, these phenomena can be described within the framework 
of the Navier-Stokes equations without application of additional a priori information. How- 
ever, utilization of methods relying directly on the Navier-Stokes equations is fraught with 
considerable calculational complexities. The kinetically consistent difference schemes (KCDS) 
applied in this paper permit the construction of numerical solutions for such problems in 
the flow domain as a whole. 

The KCDS [1-3] differ from other algorithms for the solution of the gas dynamics equa- 
tions as follows. A difference scheme is first written down for the Boltzmann equation, which 
is then averaged by using the concept of a locally Maxwell or Navier-Stokes kind of distribu- 
tion function, for the construction of the KCDS. To a significant extent this procedure is 
analogous to that used to obtain the Euler or Navier-Stokes equations from the transport equa- 
tions. These procedures are performed in reverse order for the traditional construction of 
difference schemes; averaging of the transport equations occurs first and then the difference 
approximation of the obtained equations is constructed. The schemes constructed in such a 
manner can be treated as one of the classes of schemes using artificial viscosity. However, 
this viscosity is obtained not by phenomenonlogical means, as is customary, but is consistent 
with the form of the initial difference approximation of the Boltzmann equation. These 
schemes possess simplicity and good stability, meanwhile accuring high accuracy of the anal- 
ysis. One of the characteristic features of the artificial dissipation constructed is that 
it turns out to be small in the boundary layer domain as compared with the true gas dissipa- 
tion. The KCDS thereby organically realize the passage from modelling the inviscid part of 
the flow to modelling those domains where taking account of the viscosity and heat conduc- 
tion is essential. Precisely this indeed permits utilization of the constructed apparatus 
to model a broad circle of problems studied least that are associated with the investigation 
of viscous separation flows, aswell as with the analysis of the heat transfer proceeding 
for such processes. The complexity of the solution of such problems is, to a significant 
degree, in the effective combination of the computation of processes occurring in both the 
viscous and inviscid parts of the flow. 

A characteristic example of such flows is the flow around a step located in the stream. 
In this paper results are presented of an analysis of such a flow and their comparison with 
the data of full-scale experiments. 
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I. METHODOLOGY OF THE NUMERICAL SOLUTION AND FORMULATION OF THE PROBLEM 

A KCDS with corrections written for a plane two-dimensional flow [4] is used for the 
numerical solution: 
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The dissipative function has the form [5, p. 38] 
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The system (1)-(4) is closed by the equation of state 
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The sutherland law in the form 

is used in the problem. 
the ordinary manner 
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The system of difference euations (1)-(4) was made dimensionless in 

- ~ -  " ( 8 )  x=~h, u=c~u, p=p~9, v=c~v, p=p~c~p, ~ = ~ .  
The difference scheme is supplemented by boundary conditions of the following kind the 

condition of stream drift is posed on the free boundaries, and the adhesion and non-penetra- 
tin conditions for the velocity and isothermy for e on the solid walls 

u = v = O, s = s ~ ,  ( 9 )  
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TABLE i. Comparison of Computational and Experimental 
[7] Base Pressure Data 

Modifica- 
tion num- 
ber 

8/h Re~ 
Computatio,n, 

Experiment grid grid 
61x 33 90x 50 

1,25 
O, 85 
O, 725 
0,65 

9,46. lO s 
1,48. 104 
2,47- 104 
3,19.104 

0,76 
0,72 
0,70 
0,50 

0,73 
0,68 
0,64 
0,66 

0,69 

O~ 

~ I  I / / 

s 0 Xmax X r X 

I 2  

Fig. i Fig. 2 

Fig. l.Pressure distribution p/p= along the x axis for modi- 
fications 1-4 (numbers on the curves); points are experiment 
data [7] for modifications Nos. 1 and 2. 

Fig. 2. Friction distribution along the x axis for modifica- 
tions 1-4. 

as well as the additional condition [3] assuring equality of the density of the stream to 
zero through the wall, which is realized in this case in the form 8p/3n = 0 and is asso- 
ciated with the presence of the second spatial derivatives in the continuity equation (i). 

Let us examine the conditions at the entrance boundary in greater detail. Given here 
are the laminar boundary layer parameters for a given thickness 6 

v = O ,  p = p ~ ,  

s _ 1 _ k - I / ~  ~ - - 1  M~ 1 - -  q 1 - -  , 
8~ 2 8= , 

where se=g=(I§ ) is the equilibrium internal gas energy at the wall. 
2 

Boundary conditions of a special kind that permit taking account of the influence of 
rarefaction waves being propagated upstream in the boundary layer are posed at subsonic 
points of the entrance boundary. 

Parameters of the entrance boundary were given as initial conditions in the whole com- 
putational domain. In conformity with the dimensionless notation (8), u= = M~, p~ = i, 
p~ = ( y ( F  -- 1 ) )  - z .  

2. RESULTS OF THE NUMERICAL MODELLING 

The characteristic example of a viscous supersonic flow is the flow around a step located 
in the stream. Despite its outward simplicity, this problem included many basis features 
inherent to the modelling of steady viscous separation flows, and can be considered as a 
serious calculation test. 
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Fig. 3. Heat flux distribution along the x axis for modifica- 
tions 1-4. 

Fig. 4. Base pressure distribution for modifications Nos 1-4; 
the dashed curve is a computation on a 90 • 50 grid for modifi- 
cation No. 2. 

Experimental and theoretical results of investigations of problems of this kind are 
elucidated, in particular, in the monograph [6, Vol. 3, p. 18]. Experimental data on the 
laminar separation behind a step are presented in [7], and an analysis of laminar flow by 
using difference schemes for the Navier-Stokes equations with a compact approximation of 
third order accuracy in the smooth flow domain in [8]. 

A series of computations was performed by means of the KCDS fOr0oM~ = 2.9, and the Rey- 
nolds numbers and boundary layer thicknesses presented in the table, ̂  which corresponds to 
the parameters of full-scale experiments [7]. The solid wall temperature was considered 
constant and was determined by the stagnation energy E 0. In the Sutherland law (7) m = i, 
Pr = 0.72, ~ = 1.4. A spatial grid of 61 x 33 nodes condensing to the step boundaries is 
used in the computations, and a modification No. 2 was computed on a 90 • 50 node grid to 
check the accuracy. 

For all four modifications the general flow pattern is close to that presented in [4]. 
A typical pattern of boundary layer interaction with an external ideal flow is realized 
here [6, Vol. 3, p. 48]: the supersonic compressible gas stream is separated from the step, 
passes through a rarefaction wave and is closed by a compression wave. Dependences of the 
pressure p/p~, friction T w = p~u/~n, and heat flux q = %~T/~n along the horizontal (Figs. 
1-3) and vertical (Fig. 4) surfaces of the specimen are presented in Figs. 1-4 for the modi- 
fications Nos. 1-4. All the flow characteristics, the heat flux, base pressure, magnitude of 
the friction, as well as the position of the separation point and attachment point of the 
stream vary monotonically in the selected range of parameters as the number Re~ changes. 

The pressure distribution in front of the base corresponds to the data in [6, Vol. 3, 
p. 250] and reflects upstream propagation of the influence of the rarefaction wave that occurs 
as the flow turns to a distance Re-I/z (see Fig. I). Reduction of the domain of influence 
with the growth of the number Re is seen. The pressure distribution behind the step (Fig. i) 
has the following character: directly behind the step the pressure is approximately con- 
stant. The pressure increases with distance from the step in the main flow direction and 
has a maximal gradient to the left of the point of boundary layer attachment. Their the pres- 
sure gradient drops and the pressure is equalized. As Re~ changes from 9.5"103 to 3.-104 the 
value of x/h for which pressure equalization occurs behind the compression shock, diminishes 
from 22 to 15. This regularity is observed in both the numerical and the full-scale experi- 
ment [7]. The good agreement between the data of the full-scale experiment and the results 
of the computations is seen in Fig. I. 

A comparison between the experimental [7] and numerical values of the base pressure is 
presented in the table for different Reynolds numbers. As Re~ increases from 9.5"103 to 
3.2"10 ~ the base pressure drops by changing from the value p' = p/p~ = 0.76 to 0.50. The 
pressure obtained when using the Chapman theory [6, Vol. 2, p. 214] for the laminar mixing 
Zone behind the step for zero boundary layer thickness ahead of the separation point is Pch' = 
0.38. The base pressure evaluated in this manner is independent of the Reynolds number. 
For comparison we present the value of the base pressure computed according to the Korst 

*The Reynolds number is computed according to the step height h and the free-stream parameters. 
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theory [6, Vol. 2, p. 47] for a turbulent mixing layer: p~ = 0.18. The good agreement be- 
tween the results of the numerical and the full-scale experiments is seen for the first three 
modifications where laminar flow is observed. The difference does not exceed 6%, which is 
close to the accuracy of the full-scale experiment [7]. The base pressure drop as the Reynolds 
number increases indicates the existence of a transition flow mode behind the step. In the 
transition mode where flow turbulization is manifest, the agreement becomes worse (modifica- 
tion No. 4) since the problem formulation under consideration is oriented toward laminar flow 
analysis. 

The location of the stream attachment point is seen well on the graph of the distribu- 
tion of T w (Fig. 2). The separation point is always located below the edge of the step. The 
nature of the flow in the near-wall domain is traced clearly from the behavior of the friction 
and heat flux in Figs. 2 and 3. The gas accelerates in front of the step and cools off, then 
passes through the rarefaction wave and is again heated to a temperature close to T o below 
the point of return flow attachment. Additional heating of the gas because of stagnation of 
the return flow is observed in the neighborhood of the corner point C. The gas is heated in 
the whole return flow zone near the wall CD as compared with the flow up to the step and cools 
off behind the tail compression wave (Fig. 3). The Nusselt number distribution within the 
limits of the separation zone and outside it has a maximum whose position Xma x relative to 
the point of stream attachment x r is, according to [9], related as follows: Xma x < x r. In 
computations Xma x = (0.6 - 0.7)x r is obtained. In this problem the boundary layer thickness 
before separation is close to the height of the step, consequently, viscous effects play a 
substantial role here and result in additional heating of the gas. This heating is due both 
to heat transport from the wall because of heat conduction and to transfer of the total 
enthalpy H from the mixing zone into the return flow domain (Hmi n = 640 in the mixing zone 
for modification No. 4, and Hma x = 8.27 and H 0 = 6.71 in the stream separation domain). The 
effects mentioned result in T > T o in the return flow stagnation domains (here qw ~ Re~ I)" 

The pressure and friction distributions [8] obtained for laminar flow around a step are 
qualitatively close to the data for modification No. i for M~ = 3, Re= = 3-103 , ~ = h, Tw/T= = 
2.8. 

The modification No. 2 was computed additionally on a 90 • 50 grid to confirm the ac- 
curacy (see the dashed curve in Fig. 4). The magnitude of the base pressure and its distribu- 
tion along CD became closer to experiment data (see Table i). The point of attac~nent was 
shifted downstream somewhat (x r = 12). The relationship between its position and the Nusselt 
number maximum was conserved. The separation point was shifted closer to the corner of the 
step (from 0.12 to 0.07) and the maximal value of friction increased at the endface wall. 
The remaining flow parameters, including the heat fluxes, varied insignificantly. 

Let us examine briefly the methodology of the experiment [7], with whose data the numer- 
ical results are compared. An annular profiled nozzle with a central body was used in [7], 
the total pressure in the receiver varied between 0.025 and 0.3 MPa. The model itself, which 
is a cylindrical body with an axisymmetric step whose surface is parallel to the flow axis 
is the central body. The model diameter ahead of the step is d = 2r I = 20 mm, and the step 
depth is h = 2 ~. Sampling the static pressure ahead of and after the step along its surface 
was carried out by using a tube of inner diameter d I = 0.8 mm. The Reynolds number was com- 
puted according to the free-stream parameters ahead of the step and the length of the central 
body between the nozzle critical section and the base exit. The research was performed in 
cold air (T o = 280 K) so that the temperature factor is Tw/T 0 = I. Manometers filled with a 
fluid with low specific gravity and low vapor elasticity (dibutylphthalate, specific gravity 
1.041 g/cm 3, vapor elasticity 10 -6 mm Hg) were used to measure the static pressure that was 
2.5"10 -4 MPa. The initial vacuum pump evacuated the manometer and the tank cavities to a 
10 -6 mm Hg pressure during preparation of the experiments. The error in base pressure mea- 
surement was 2-4%. Determination of the Math number at the nozzle exit was performed by the 
nucleus of the total pressure profile. The nonsymmetricity of the p/p~ profile within the 
limits of the nucleus (y = 2-12 mm) was &(p/p=) = 7%, which corresponds to a change in the 
Mach number M - 1%. The boundary layer thickness before separation was measured by using a 
total pressure tube (a microhood), the boundary of the annular stream and boundary layer 
nucleus was determined here. The approximate estimates performed on the influence of the 
parameter 6/r I - 0.2 on the boundary layer characteristics on the convex axisymmetric surfaces 
showed that the boundary layer ahead of separation is close to planar in the case under con- 
sideration. This permits carrying out numerical modelling of this problem is a planar two- 
dimensional geometry. 
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Therefore, it is shown in the paper that the KCDS permit successful modelling of separa- 
tion flows in supersonic streams of a viscous heat conductive gas. 

NOTATION 

u = (u, v) is the velocity; p is the density; p is the pressure; E is the total energy; 
is the internal energy; T is the temperature; ~ is the dissipative function; ~xx, ~xy, ~yy 

are viscous stress tensor components; c is the sound speed; 7 is the adiabatic index; D, 
are the viscosity and heat conduction coefficients; Pr is the Prandtl number; Re is the Rey- 
nolds number; M is the Mach number; h is the step height; h x, hY are steps of the spatial 
grid; m is the exponent in the Sutherland law; ~w is friction; q is the heat flux; 8 is the 
boundary layer thickness; n is the external normal to the surface; H is the total enthalpy. 
The subscripts w refers to the wall parameters, ~ to the unperturbed stream, and 0 to stagna- 
tion. 
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METHOD OF ~RICAL SOLUTION OF ONE-DIMENSIONALMULTIFRONT STEFAN PROBLEMS 

R. I. Medvedskii and Yu. A. Sigunov UDC 536.42:519.6 

A finite-element method with explicit isolation of fronts is proposed for Stefan 
problems with an arbitrary number of phase transition boundaries. 

In conformity with practical requirement for the mathematical modelling of phase transi- 
tions it is necessary to perform explicit separation of the moving boundaries in the majority 
of cases, that not every numerical method permits doing. For instance, algorithms based on 
an enthalpy formulation [i, 2] or "blurring of the front" [3] that satisfactorily determine 
the temperature field, yield only a rough estimate of the phase front location. Numerous 
literature, for which a brief survey is contained in [4, 5], say is devoted to methods with 
explicit separation of fronts. Recently, several different modifications of application of 
the finite element method with deformable computational grids has been proposed in the direc- 
tion of developing this approach for the solution of problems in domains with nonstationary 
boundaries [6-8]. The common disadvantage of both these and other finite-element methods 
proposed earlier is that different numerical schemes describe heat transmission within a 
single-phase domain and the front motion law, where the order of accuracy of the second sche- 
mes (in direct proximity of the front) is lower, as a rule, then for the first. Besides the 
degradation of the accuracy, the heterogeneity of the computation schemes results in com- 
plication of the algorithm for the solution, that grows strongly as the number of fronts in- 
creases. 
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